
Cryptographic Primitives Library Security Policy Document

© 2018 Microsoft. All Rights Reserved Page 1 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Microsoft Windows

FIPS 140 Validation
Microsoft Windows 10 (Fall Creators Update, April 2018

Update)

Microsoft Windows 10 Mobile (Fall Creators Update)

Microsoft Windows Server (versions 1709 and 1803)

Non-Proprietary

Security Policy Document

Version Number 1.3
Updated On October 22, 2018

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 2 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The information contained in this document
represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information
presented after the date of publication.

This document is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the
responsibility of the user. This work is licensed under
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution
of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or
send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications,
trademarks, copyrights, or other intellectual property
rights covering subject matter in this document.
Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this
document does not give you any license to these
patents, trademarks, copyrights, or other intellectual
property.

© 2019 Microsoft Corporation. All rights reserved.

Microsoft, Windows, the Windows logo, Windows
Server, and BitLocker are either registered
trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

The names of actual companies and products
mentioned herein may be the trademarks of their
respective owners.

http://creativecommons.org/licenses/by-nd-nc/1.0/

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 3 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Version History

Version Date Summary of changes

1.0 October 3, 2017 Draft sent to NIST CMVP

1.1 November 18, 2017 Updates for Windows 10 version 1709

1.2 May 1, 2018 Editing updates

1.3 October 22, 2018 Updates for Windows 10 version 1803

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 4 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

TABLE OF CONTENTS

SECURITY POLICY DOCUMENT ...1

VERSION HISTORY ..3

1 INTRODUCTION ...8

1.1 LIST OF CRYPTOGRAPHIC MODULE BINARY EXECUTABLES ..8

1.2 VALIDATED PLATFORMS ..9

1.3 CONFIGURE WINDOWS TO USE FIPS-APPROVED CRYPTOGRAPHIC ALGORITHMS 12

2 CRYPTOGRAPHIC MODULE SPECIFICATION ... 12

2.1 CRYPTOGRAPHIC BOUNDARY .. 13

2.2 FIPS 140-2 APPROVED ALGORITHMS .. 13

2.3 NON-APPROVED ALGORITHMS ... 15

2.4 FIPS 140-2 APPROVED ALGORITHMS FROM BOUNDED MODULES .. 16

2.5 CRYPTOGRAPHIC BYPASS ... 17

2.6 HARDWARE COMPONENTS OF THE CRYPTOGRAPHIC MODULE .. 17

3 CRYPTOGRAPHIC MODULE PORTS AND INTERFACES .. 18

3.1 EXPORT FUNCTIONS ... 18

3.2 CNG PRIMITIVE FUNCTIONS .. 18

3.2.1 ALGORITHM PROVIDERS AND PROPERTIES ... 19

3.2.1.1 BCryptOpenAlgorithmProvider ... 19

3.2.1.2 BCryptCloseAlgorithmProvider ... 20

3.2.1.3 BCryptSetProperty .. 20

3.2.1.4 BCryptGetProperty .. 20

3.2.1.5 BCryptFreeBuffer .. 20

3.2.2 KEY AND KEY-PAIR GENERATION .. 20

3.2.2.1 BCryptGenerateSymmetricKey ... 20

3.2.2.2 BCryptGenerateKeyPair .. 21

3.2.2.3 BCryptFinalizeKeyPair ... 21

3.2.2.4 BCryptDuplicateKey .. 21

3.2.2.5 BCryptDestroyKey ... 22

3.2.3 RANDOM NUMBER GENERATION ... 23

3.2.3.1 BCryptGenRandom ... 23

3.2.4 KEY ENTRY AND OUTPUT .. 23

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 5 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.2.4.1 BCryptImportKey ... 23

3.2.4.2 BCryptImportKeyPair .. 23

3.2.4.3 BCryptExportKey ... 24

3.2.5 ENCRYPTION AND DECRYPTION .. 24

3.2.5.1 BCryptEncrypt ... 24

3.2.5.2 BCryptDecrypt ... 24

3.2.6 HASHING AND MESSAGE AUTHENTICATION ... 25

3.2.6.1 BCryptCreateHash ... 25

3.2.6.2 BCryptHashData .. 25

3.2.6.3 BCryptDuplicateHash .. 25

3.2.6.4 BCryptFinishHash .. 25

3.2.6.5 BCryptDestroyHash ... 26

3.2.6.6 BCryptHash.. 26

3.2.6.7 BCryptCreateMultiHash .. 26

3.2.6.8 BCryptProcessMultiOperations ... 26

3.2.7 SIGNING AND VERIFICATION .. 27

3.2.7.1 BCryptSignHash ... 27

3.2.7.2 BCryptVerifySignature ... 27

3.2.8 SECRET AGREEMENT AND KEY DERIVATION .. 27

3.2.8.1 BCryptSecretAgreement ... 27

3.2.8.2 BCryptDeriveKey ... 27

3.2.8.3 BCryptDestroySecret ... 28

3.2.8.4 BCryptKeyDerivation ... 28

3.2.8.5 BCryptDeriveKeyPBKDF2 ... 28

3.2.9 CRYPTOGRAPHIC TRANSITIONS ... 29

3.2.9.1 Bit Strengths of DH and ECDH ... 29

3.2.9.2 SHA-1 ... 29

3.3 CONTROL INPUT INTERFACE ... 29

3.4 STATUS OUTPUT INTERFACE ... 29

3.5 DATA OUTPUT INTERFACE ... 29

3.6 DATA INPUT INTERFACE .. 29

3.7 NON-SECURITY RELEVANT CONFIGURATION INTERFACES ... 29

4 ROLES, SERVICES AND AUTHENTICATION ... 31

4.1 ROLES ... 31

4.2 SERVICES ... 31

4.2.1 MAPPING OF SERVICES, ALGORITHMS, AND CRITICAL SECURITY PARAMETERS ... 31

4.2.2 MAPPING OF SERVICES, EXPORT FUNCTIONS, AND INVOCATIONS .. 33

4.2.3 NON-APPROVED SERVICES .. 34

4.3 AUTHENTICATION .. 35

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 6 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

5 FINITE STATE MODEL ... 35

5.1 SPECIFICATION .. 35

6 OPERATIONAL ENVIRONMENT... 35

6.1 SINGLE OPERATOR ... 36

6.2 CRYPTOGRAPHIC ISOLATION ... 36

6.3 INTEGRITY CHAIN OF TRUST ... 36

7 CRYPTOGRAPHIC KEY MANAGEMENT .. 38

7.1 ACCESS CONTROL POLICY .. 39

7.2 KEY MATERIAL .. 40

7.3 KEY GENERATION .. 40

7.4 KEY ESTABLISHMENT .. 40

7.4.1 NIST SP 800-132 PASSWORD BASED KEY DERIVATION FUNCTION (PBKDF) ... 41

7.4.2 NIST SP 800-38F AES KEY WRAPPING.. 41

7.5 KEY ENTRY AND OUTPUT ... 41

7.6 KEY STORAGE ... 42

7.7 KEY ARCHIVAL .. 42

7.8 KEY ZEROIZATION .. 42

8 SELF-TESTS .. 42

8.1 POWER-ON SELF-TESTS .. 42

8.2 CONDITIONAL SELF-TESTS .. 43

9 DESIGN ASSURANCE .. 43

10 MITIGATION OF OTHER ATTACKS ... 44

11 SECURITY LEVELS ... 44

12 ADDITIONAL DETAILS .. 45

13 APPENDIX A – HOW TO VERIFY WINDOWS VERSIONS AND DIGITAL SIGNATURES 46

13.1 HOW TO VERIFY WINDOWS VERSIONS ... 46

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 7 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

13.2 HOW TO VERIFY WINDOWS DIGITAL SIGNATURES ... 46

14 APPENDIX B – REFERENCES .. 47

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 8 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1 Introduction
The Microsoft Windows Cryptographic Primitives Library is a general purpose, software-based

cryptographic module. Cryptographic Primitives Library provides cryptographic services to user-mode

applications running on the Windows operating system.

Cryptographic Primitives Library encapsulates several different cryptographic algorithms accessible via

the Microsoft CNG (Cryptography, Next Generation) API which are exported by BCRYPT.DLL. BCRYPT.DLL

is an API wrapper for BCRYPTPRIMITIVES.DLL and can be linked into applications by software developers

to permit the use of general-purpose FIPS 140-2 Level 1 compliant cryptography.

The relationship between Cryptographic Primitives Library and other components is shown in the

following diagram:

ApplicationApplication layer

CNG API router
(BCRYPT.DLL)

BCRYPTPRIMITIVES.DLL Other provider(s)

CNG API

Kernel

CNG Provider
Layer

CNG API Layer CNG Provider
Interface

CNG.SYS

Driver

Provider
Registration

RNG

Entropy
Source

Entropy
Source

Crpyto Provider Installer

1.1 List of Cryptographic Module Binary Executables
The Microsoft Windows Cryptographic Primitives Library cryptographic module contains the following

binaries:

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 9 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

 BCRYPTPRIMITIVES.DLL

The Windows builds covered by this validation are:

 Windows 10 version 1709 and Windows Server build version 1709 10.0.16299

 Windows 10 Mobile version 1709 build 10.0.15254

 Microsoft Surface Hub build 10.0.15063.674

 Windows 10 version 1803 and Windows Server version 1803 build 10.0.17134

1.2 Validated Platforms
The Windows editions covered by this validation are:

 Windows 10 Home Edition (32-bit version)

 Windows 10 Pro Edition (64-bit version)

 Windows 10 Enterprise Edition (64-bit version)

 Windows 10 Education Edition (64-bit version)

 Windows 10 S Edition (64-bit version)

 Windows 10 Mobile

 Microsoft Surface Hub

 Windows Server Standard Core

 Windows Server Datacenter Core

The Cryptographic Primitives Library components listed in Section 1.1 were validated using the

combination of computers and Windows operating system editions specified in the table below.

All the computers for Windows 10 and Windows Server listed in the table below are all 64-bit Intel

architecture and implement the AES-NI instruction set but not the SHA Extensions. The exceptions are:

 Dell Inspiron 660s - Intel Core i3 without AES-NI and SHA Extensions

 HP Slimline Desktop - Intel Pentium with AES-NI and SHA Extensions

Windows 10 Mobile runs on the ARM architecture, which does not implement AES-Ni instructions or

SHA extensions:

 Microsoft Lumia 950 - Qualcomm Snapdragon 808 (A57, A53)

 Microsoft Lumia 950 XL - Qualcomm Snapdragon 810 (A57, A53)

 Microsoft Lumia 650 - Qualcomm Snapdragon 212 (A7)

 HP Elite x3 - Qualcomm Snapdragon 820 (Kryo)

Table 1 Validated Platforms for Windows 10 Fall Creators Update and Windows Server version 1709

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 10 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Computer

W
in

d
o

w
s 1

0

H
o

m
e

W
in

d
o

w
s 1

0
 P

ro

W
in

d
o

w
s 1

0

En
te

rp
rise

W
in

d
o

w
s 1

0

Ed
u

catio
n

Su
rface H

u
b

W
in

d
o

w
s 1

0
 S

W
in

d
o

w
s 1

0

M
o

b
ile

 W

in
d

o
w

s Server
Stan

d
ard

W
in

d
o

w
s Server

D
atacen

te
r

Microsoft Surface
Book 2

 √

Microsoft Surface
Laptop

 √ √ √

Microsoft Surface
Pro

 √ √ √

Microsoft Surface
Book

 √

Microsoft Surface
Pro 4

 √

Microsoft Surface
Pro 3

 √

Microsoft Surface
3 with LTE

 √

Microsoft Surface
Studio

 √

Microsoft Surface
Hub

 √

Windows Server
Standard Core
Hyper-V1

 √ √

Windows Server
2016 Hyper-V2

 √

Microsoft Lumia
950

 √

Microsoft Lumia
950 XL

 √

Microsoft Lumia
650

 √

Dell Latitude 5285 √

Dell Latitude 5290 √

Dell Inspiron 660s √

Dell Precision
Tower 5810MT

 √ √ √

Dell PowerEdge
R630

 √ √ √

1 Hardware platform: Dell 5810MT
2 Hardware platform: Surface Pro 4

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 11 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Dell PowerEdge
R740

 √ √

HP Elite X3 √

HP Compaq Pro
6305

 √

HP Pro x2 612 G2
Detachable PC
with LTE

 √

HP Slimline
Desktop

 √

Panasonic
Toughbook

 √

Table 2 Validated Platforms for Windows 10 and Windows Server version 1803

Computer Windows
10 Home

Windows
10 Pro

Windows
10
Enterprise

Windows
10
Education

Windows
Server
Standard

Windows
Server
Datacenter

Microsoft
Surface Go

√

Microsoft
Surface Book 2

 √ √

Microsoft
Surface Pro LTE

 √ √

Microsoft
Surface Laptop

 √ √ √

Microsoft
Surface Studio

 √

Windows
Server Standard
Core Hyper-V3

 √ √

Windows
Server 2016
Hyper-V4

 √

Dell Latitude
5290

 √

Dell Latitude 12
Rugged Tablet

 √

Dell Inspiron
660s

√

3 Hardware platform: Dell Precision Tower 5810MT
4 Hardware platform: Dell PowerEdge R740

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 12 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Computer Windows
10 Home

Windows
10 Pro

Windows
10
Enterprise

Windows
10
Education

Windows
Server
Standard

Windows
Server
Datacenter

Dell PowerEdge
R740

 √ √

HP Pro x2 612
G2 Detachable
PC with LTE

 √

HP Slimline
Desktop

 √

1.3 Configure Windows to use FIPS-Approved Cryptographic Algorithms
Use the FIPS Local/Group Security Policy setting or a Mobile Device Management (MDM) to enable FIPS-
Approved mode for Cryptographic Primitives Library.

The Windows operating system provides a group (or local) security policy setting, “System
cryptography: Use FIPS compliant algorithms for encryption, hashing, and signing”.

Consult the MDM documentation for information on how to enable FIPS-Approved mode. The Policy
CSP - Cryptography includes the setting AllowFipsAlgorithmPolicy which is the setting the MDM will
configure.

Changes to the Approved mode security policy setting do not take effect until the computer has been
rebooted.

2 Cryptographic Module Specification
Cryptographic Primitives Library is a multi-chip standalone module that operates in FIPS-approved mode

during normal operation of the computer and Windows operating system and when Windows is

configured to use FIPS-approved cryptographic algorithms as described in Configure Windows to use

FIPS-Approved Cryptographic Algorithms.

In addition to configuring Windows to use FIPS-Approved Cryptographic Algorithms, third-party

applications and drivers installed on the Windows platform must not use any of the non-approved

algorithms implemented by this module. Windows will not operate in an Approved mode when the

operators chooses to use a non-Approved algorithm or service.

The following configurations and modes of operation will cause Cryptographic Primitives Library to

operate in a non-approved mode of operation:

 Boot Windows in Debug mode

 Boot Windows with Driver Signing disabled

 Windows enters the ACPI S4 power state (for Windows 10 version 1803 only)

https://docs.microsoft.com/en-us/windows/client-management/mdm/policy-csp-cryptography#cryptography-allowfipsalgorithmpolicy
https://docs.microsoft.com/en-us/windows/client-management/mdm/policy-csp-cryptography#cryptography-allowfipsalgorithmpolicy

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 13 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

2.1 Cryptographic Boundary
The software cryptographic boundary for Cryptographic Primitives Library is defined as the binary

BCRYPTPRIMITIVES.DLL.

2.2 FIPS 140-2 Approved Algorithms
Cryptographic Primitives Library implements the following FIPS-140-2 Approved algorithms:5

Algorithm Windows 10
and
Windows
Server
version
1709

Windows
10 Mobile
version
1709

Microsoft
Surface
Hub
(10.0.1506
3.674)

Windows 10
and
Windows
Server
version
1803

FIPS 180-4 SHS SHA-1, SHA-256, SHA-384, and SHA-512
#4009 #4010 #4011 #4633

FIPS PUB 198-1 HMAC-SHA-16 and HMAC-SHA-256
#3267 #3268 #3269 #3858

FIPS 197 AES-128, AES-192, and AES-256 in ECB, CBC,
CFB8, CFB128, and CTR modes #4897 #4901 #4902 # 5847

NIST SP 800-38B and SP 800-38C AES-128, AES-192, and
AES-256 in CCM and CMAC modes #4897 #4901 #4902 #5847

NIST SP 800-38D AES-128, AES-192, and AES-256 GCM
decryption and GMAC #4897 #4901 #4902 #5847

NIST SP 800-38E XTS-AES XTS-128 and XTS-2567
#4897 #4901 #4902 #5847

FIPS 186-4 RSA PKCS#1 (v1.5) digital signature generation
and verification with 1024, 2048, and 3072 moduli;
supporting SHA-18, SHA-256, SHA-384, and SHA-512 #2667 #2670 #2671 #3079

FIPS 186-4 RSA key-pair generation with 2048 and 3072
moduli

#2667 #2670 #2671 #3079

FIPS 186-4 ECDSA key pair generation and verification,
signature generation and verification with the following
NIST curves: P-256, P-384, P-521

#1246 #1249 #1250 #1563

FIPS 186-4 DSA PQG generation and verification,
signature generation and verification

#1301 #1302 #1303 #1479

5 This module may not use some of the capabilities described in each CAVP certificate.
6 For HMAC, only key sizes that are >= 112 bits in length are used by the module in FIPS mode.
7 AES XTS must be used only to protect data at rest and the caller needs to ensure that the length of data
encrypted does not exceed 220 AES blocks.
8 SHA-1 is only acceptable for legacy signature verification.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 14 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

KAS – SP 800-56A Diffie-Hellman Key Agreement; Finite
Field Cryptography (FFC) with parameter FB (p=2048,
q=224) and FC (p=2048, q=256); key establishment
methodology provides 112 bits of encryption strength

#146 #147 #148 #200

KAS – SP 800-56A EC Diffie-Hellman Key Agreement;
Elliptic Curve Cryptography (ECC) with parameter EC (P-
256 w/ SHA-256), ED (P-384 w/ SHA-384), and EE (P-521
w/ SHA-512); key establishment methodology provides
between 128 and 256-bits of encryption strength

#146 #147 #148 #200

NIST SP 800-56B RSADP mod 2048
#1498 #1509 #1513 #2111

NIST SP 800-90A AES-256 counter mode DRBG
#1730 #1731 #1732 #2435

NIST SP 800-67r1 Triple-DES (2 key legacy-use decryption9
and 3 key encryption/decryption) in ECB, CBC, CFB8 and
CFB64 modes

#2556 #2557 #2558 #2862

NIST SP 800-108 Key Derivation Function (KDF) CMAC-AES
(128, 192, 256), HMAC (SHA1, SHA-256, SHA-384, SHA-
512)

#157 #158 #159 #242

NIST SP 800-38F AES Key Wrapping (128, 192, and 256)

#4898 #4899 #4900 #5860

NIST SP 800-135 IKEv1, IKEv2 and TLS KDF primitives10

#1496 #1507 #1511 #2110

NIST SP 800-132 KDF (also known as PBKDF) with HMAC
(SHA-1, SHA-256, SHA-384, SHA-512) as the pseudo-
random function Vendor affirmed

9 Two-key Triple-DES Decryption is only allowed for Legacy-usage (as per SP 800-131A). The use of two-key Triple-
DES Encryption is disallowed. The caller is responsible for using the key for up to 2^20 encryptions for IETF
protocols and 2^16 encryptions for any other use.
10 This cryptographic module supports the TLS, IKEv1, and IKEv2 protocols with SP 800-135 rev 1 KDF primitives,
however, the protocols have not been reviewed or tested by the NIST CAVP and CMVP.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 15 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

2.3 Non-Approved Algorithms
Mode Cryptographic Primitives Library implements the following non-approved algorithms:

 SHA-1 hash, which is disallowed for use in digital signature generation. It can be used for legacy
digital signature verification. Its use is Acceptable for non-digital signature generation
applications.

 If HMAC-SHA1 is used, key sizes less than 112 bits (14 bytes) are not allowed for usage in HMAC
generation, as per SP 800-131A.

 RSA 1024-bits for digital signature generation, which is disallowed.

 FIPS 186-2 DSA with key length of 1024 bits

 NIST SP 800-56A Key Agreement using Finite Field Cryptography (FFC) with parameter FA
(p=1024, q=160). The key establishment methodology provides 80 bits of encryption strength
instead of the Approved 112 bits of encryption strength listed above.

 MD5 and HMAC-MD5 (allowed in TLS and EAP-TLS)

 RC2, RC4, MD2, MD4 (disallowed in FIPS mode)

 2-Key Triple-DES Encryption, which is disallowed for usage altogether as of the end of 2015.

 DES in ECB, CBC, CFB8 and CFB64 modes (disallowed in FIPS mode)

 Legacy CAPI KDF (proprietary; disallowed in FIPS mode)

 HKDF (disallowed in FIPS mode)

 RSA encrypt/decrypt (disallowed in FIPS mode)

 IEEE 1619-2007 XTS-AES, XTS-128 and XTS-256

 NIST SP 800-38D AES-128, AES-192, and AES-256 GCM encryption

 ECDH with the following curves that are allowed in FIPS mode as per FIPS 140-2 IG A.2

Curve Security Strength (bits) Allowed in FIPS mode

Curve25519 128 Yes

brainpoolP160r1 80 No

brainpoolP192r1 96 No

brainpoolP192t1 96 No

brainpoolP224r1 112 Yes

brainpoolP224t1 112 Yes

brainpoolP256r1 128 Yes

brainpoolP256t1 128 Yes

brainpoolP320r1 160 Yes

brainpoolP320t1 160 Yes

brainpoolP384r1 192 Yes

brainpoolP384t1 192 Yes

brainpoolP512r1 256 Yes

brainpoolP512t1 256 Yes

ec192wapi 96 No

nistP192 96 No

nistP224 112 Yes

numsP256t1 128 Yes

numsP384t1 192 Yes

numsP512t1 256 Yes

secP160k1 80 No

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 16 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Curve Security Strength (bits) Allowed in FIPS mode

secP160r1 80 No

secP160r2 80 No

secP192k1 96 No

secP192r1 96 No

secP224k1 112 Yes

secP224r1 112 Yes

secP256k1 128 Yes

secP256r1 128 Yes

secP384r1 192 Yes

secP521r1 256 Yes

wtls12 112 Yes

wtls7 80 No

wtls9 80 No

x962P192v1 96 No

x962P192v2 96 No

x962P192v3 96 No

x962P239v1 120 Yes

x962P239v2 120 Yes

x962P239v3 120 Yes

x962P256v1 128 Yes

2.4 FIPS 140-2 Approved Algorithms from Bounded Modules
A bounded module is a FIPS 140 module which provides cryptographic functionality that is relied on by a

downstream module. As described in the Integrity Chain of Trust section, the Cryptographic Primitives

Library depends on the following modules and algorithms:

When Hypvisor Code Integrity (HVCI) is not enabled, Code Integrity version 1709 (module certificate #

3195) provides:

 CAVP certificates # 2668 (Windows 10 and Windows Server), #2669 (Windows 10 Mobile),

#2672 (Surface Hub) for FIPS 186-4 RSA PKCS#1 (v1.5) digital signature verification with 2048

moduli; supporting SHA-256

 CAVP certificates # 4009 (Windows 10 and Windows Server), #4010 (Windows 10 Mobile),

#4011 (Surface Hub) for FIPS 180-4 SHS SHA-256

When Memory Integrity, called HVCI in previous Windows 10 versions, is not enabled, Code Integrity

version 1803 (module certificate # 3195) provides:

 CAVP certificates # 3080 (Windows 10 and Windows Server for FIPS 186-4 RSA PKCS#1 (v1.5)

digital signature verification with 2048 moduli; supporting SHA-256

 CAVP certificates # 4633 (Windows 10 and Windows Server) for FIPS 180-4 SHS SHA-256

When HVCI is enabled, Secure Kernel Code Integrity version 1709 (module certificate #3096) provides:

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 17 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

 CAVP certificate # 3080 (Windows 10 and Windows Server) for FIPS 186-4 RSA PKCS#1 (v1.5)

digital signature verification with 2048 moduli; supporting SHA-256

 CAVP certificate # 4633 (Windows 10 and Windows Server) for FIPS 180-4 SHS SHA-256

When Memory Integrity is enabled, Secure Kernel Code Integrity version 1803 (module certificate #

3096) provides:

 CAVP certificate # 3080 (Windows 10 and Windows Server) for FIPS 186-4 RSA PKCS#1 (v1.5)

digital signature verification with 2048 moduli; supporting SHA-256

 CAVP certificate # 4633 (Windows 10 and Windows Server) for FIPS 180-4 SHS SHA-256

The Cryptographic Primitives Library depends on Kernel Mode Cryptographic Primitives (module

certificate # 3196) non-deterministic random number generator (NDRNG) for AES-CTR DRBG Entropy

Input. The NDRNG that provides the entropy is not a FIPS Approved algorithm, but is allowed by FIPS

140.

2.5 Cryptographic Bypass
Cryptographic bypass is not supported by Cryptographic Primitives Library.

2.6 Hardware Components of the Cryptographic Module
The physical boundary of the module is the physical boundary of the computer that contains the

module. The following diagram illustrates the hardware components used by the Cryptographic

Primitives Library module:

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 18 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3 Cryptographic Module Ports and Interfaces

3.1 Export Functions
The Cryptographic Primitives Library module implements a set of algorithm providers for the

Cryptography Next Generation (CNG) framework in Windows. Each provider in this module represents a

single cryptographic algorithm or a set of closely related cryptographic algorithms. These algorithm

providers are invoked through the CNG algorithm primitive functions, which are sometimes collectively

referred to as the BCrypt API. For a full list of these algorithm providers, see

https://msdn.microsoft.com/en-us/library/aa375534.aspx

The Cryptographic Primitives Library module exposes its cryptographic services to the operating system

through a set of exported functions. These functions are used by the CNG framework to retrieve

references to the different algorithm providers, in order to route BCrypt API calls appropriately to

Cryptographic Primitives Library. These functions return references to implementations of cryptographic

functions that correspond directly to functions in the BCrypt API. For details, please see the CNG SDK for

Windows 10, available at https://msdn.microsoft.com/en-us/library/windows/desktop/aa376210.aspx

The following functions are exported by Cryptographic Primitives Library:

 GetAsymmetricEncryptionInterface

 GetCipherInterface

 GetHashInterface

 GetKeyDerivationInterface

 GetRngInterface

 GetSecretAgreementInterface

 GetSignatureInterface

 ProcessPrng

 ProcessPrngGuid

3.2 CNG Primitive Functions
The following list contains the CNG functions which can be used by callers to access the cryptographic

services in Cryptographic Primitives Library.

 BCryptCloseAlgorithmProvider

 BCryptCreateHash

 BCryptCreateMultiHash

 BCryptDecrypt

 BCryptDeriveKey

 BCryptDeriveKeyPBKDF2

 BCryptDestroyHash

 BCryptDestroyKey

 BCryptDestroySecret

 BCryptDuplicateHash

https://msdn.microsoft.com/en-us/library/aa375534.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa376210.aspx

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 19 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

 BCryptDuplicateKey

 BCryptEncrypt

 BCryptExportKey

 BCryptFinalizeKeyPair

 BCryptFinishHash

 BCryptFreeBuffer

 BCryptGenerateKeyPair

 BCryptGenerateSymmetricKey

 BCryptGenRandom

 BCryptGetProperty

 BCryptHash

 BCryptHashData

 BCryptImportKey

 BCryptImportKeyPair

 BCryptKeyDerivation

 BCryptOpenAlgorithmProvider

 BCryptProcessMultiOperations

 BCryptSecretAgreement

 BCryptSetProperty

 BCryptSignHash

 BCryptVerifySignature

All of these functions are used in the approved mode. Furthermore, these are the only approved

functions that this module can perform.

Cryptographic Primitives Library has additional export functions described in Non-Security Relevant

Configuration Interfaces.

3.2.1 Algorithm Providers and Properties

3.2.1.1 BCryptOpenAlgorithmProvider

NTSTATUS WINAPI BCryptOpenAlgorithmProvider(

BCRYPT_ALG_HANDLE *phAlgorithm,

LPCWSTR pszAlgId,

LPCWSTR pszImplementation,

ULONG dwFlags);

The BCryptOpenAlgorithmProvider() function has four parameters: algorithm handle output to the

opened algorithm provider, desired algorithm ID input, an optional specific provider name input, and

optional flags. This function loads and initializes a CNG provider for a given algorithm, and returns a

handle to the opened algorithm provider on success. See https://msdn.microsoft.com for CNG

providers. Unless the calling function specifies the name of the provider, the default provider is used.

The default provider is the first provider listed for a given algorithm. The calling function must pass the

BCRYPT_ALG_HANDLE_HMAC_FLAG flag in order to use an HMAC function with a hash algorithm.

https://msdn.microsoft.com/

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 20 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.2.1.2 BCryptCloseAlgorithmProvider

NTSTATUS WINAPI BCryptCloseAlgorithmProvider(

BCRYPT_ALG_HANDLE hAlgorithm,

ULONG dwFlags);

This function closes an algorithm provider handle opened by a call to BCryptOpenAlgorithmProvider()

function.

3.2.1.3 BCryptSetProperty

NTSTATUS WINAPI BCryptSetProperty(

BCRYPT_HANDLE hObject,

LPCWSTR pszProperty,

PUCHAR pbInput,

ULONG cbInput,

ULONG dwFlags);

The BCryptSetProperty() function sets the value of a named property for a CNG object, e.g., a

cryptographic key. The CNG object is referenced by a handle, the property name is a NULL terminated

string, and the value of the property is a length-specified byte string.

3.2.1.4 BCryptGetProperty

NTSTATUS WINAPI BCryptGetProperty(

BCRYPT_HANDLE hObject,

LPCWSTR pszProperty,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptGetProperty() function retrieves the value of a named property for a CNG object, e.g., a

cryptographic key. The CNG object is referenced by a handle, the property name is a NULL terminated

string, and the value of the property is a length-specified byte string.

3.2.1.5 BCryptFreeBuffer

VOID WINAPI BCryptFreeBuffer(

PVOID pvBuffer);

Some of the CNG functions allocate memory on caller’s behalf. The BCryptFreeBuffer() function frees

memory that was allocated by such a CNG function.

3.2.2 Key and Key-Pair Generation

3.2.2.1 BCryptGenerateSymmetricKey

NTSTATUS WINAPI BCryptGenerateSymmetricKey(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_KEY_HANDLE *phKey,

PUCHAR pbKeyObject,

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 21 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

ULONG cbKeyObject,

PUCHAR pbSecret,

ULONG cbSecret,

ULONG dwFlags);

The BCryptGenerateSymmetricKey() function generates a symmetric key object directly from a DRBG for

use with a symmetric encryption algorithm or key derivation algorithm from a supplied cbSecret bytes

long key value provided in the pbSecret memory location. The calling application must specify a handle

to the algorithm provider opened with the BCryptOpenAlgorithmProvider() function. The algorithm

specified when the provider was opened must support symmetric key encryption or key derivation.

3.2.2.2 BCryptGenerateKeyPair

NTSTATUS WINAPI BCryptGenerateKeyPair(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_KEY_HANDLE *phKey,

ULONG dwLength,

ULONG dwFlags);

The BCryptGenerateKeyPair() function creates a public/private key pair object without any

cryptographic keys in it. After creating such an empty key pair object using this function, call the

BCryptSetProperty() function to set its properties. The key pair can be used only after

BCryptFinalizeKeyPair() function is called.

Note: for when generating a key pair with “BCRYPT_DSA_ALGORITHM” If the key length is 1024 bits,

then a process conformant with FIPS 186-2 DSA will be used to generate the key pair and perform

subsequent DSA operations11. If the key length is 2048 or 3072 bits, then a process conformant with

FIPS 186-4 DSA is used to generate the key pair and perform subsequent DSA operations.

3.2.2.3 BCryptFinalizeKeyPair

NTSTATUS WINAPI BCryptFinalizeKeyPair(

BCRYPT_KEY_HANDLE hKey,

ULONG dwFlags);

The BCryptFinalizeKeyPair() function completes a public/private key pair import or generation directly

from the output of a DRBG. The key pair cannot be used until this function has been called. After this

function has been called, the BCryptSetProperty() function can no longer be used for this key pair.

3.2.2.4 BCryptDuplicateKey

NTSTATUS WINAPI BCryptDuplicateKey(

BCRYPT_KEY_HANDLE hKey,

BCRYPT_KEY_HANDLE *phNewKey,

PUCHAR pbKeyObject,

ULONG cbKeyObject,

ULONG dwFlags);

11 1024 bits is not an approved key length for DSA.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 22 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The BCryptDuplicateKey() function creates a duplicate of a symmetric key object.

3.2.2.5 BCryptDestroyKey

NTSTATUS WINAPI BCryptDestroyKey(

BCRYPT_KEY_HANDLE hKey);

The BCryptDestroyKey() function destroys a key.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 23 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.2.3 Random Number Generation

3.2.3.1 BCryptGenRandom

NTSTATUS WINAPI BCryptGenRandom(

BCRYPT_ALG_HANDLE hAlgorithm,

PUCHAR pbBuffer,

ULONG cbBuffer,

ULONG dwFlags);

The BCryptGenRandom() function fills a buffer with random bytes. BCRYPTPRIMITVES.DLL implements

the following random number generation algorithm:

 BCRYPT_RNG_ALGORITHM. This is the AES-256 counter mode based random generator as
defined in SP 800-90A.

3.2.4 Key Entry and Output

3.2.4.1 BCryptImportKey

NTSTATUS WINAPI BCryptImportKey(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_KEY_HANDLE hImportKey,

LPCWSTR pszBlobType,

BCRYPT_KEY_HANDLE *phKey,

PUCHAR pbKeyObject,

ULONG cbKeyObject,

PUCHAR pbInput,

ULONG cbInput,

ULONG dwFlags);

The BCryptImportKey() function imports a symmetric key from a key blob.

3.2.4.2 BCryptImportKeyPair

NTSTATUS WINAPI BCryptImportKeyPair(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_KEY_HANDLE hImportKey,

LPCWSTR pszBlobType,

BCRYPT_KEY_HANDLE *phKey,

PUCHAR pbInput,

ULONG cbInput,

ULONG dwFlags);

The BCryptImportKeyPair() function is used to import a public/private key pair from a key blob.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 24 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.2.4.3 BCryptExportKey

NTSTATUS WINAPI BCryptExportKey(

BCRYPT_KEY_HANDLE hKey,

BCRYPT_KEY_HANDLE hExportKey,

LPCWSTR pszBlobType,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptExportKey() function exports a key to a memory blob that can be persisted for later use.

3.2.5 Encryption and Decryption

3.2.5.1 BCryptEncrypt

NTSTATUS WINAPI BCryptEncrypt(

BCRYPT_KEY_HANDLE hKey,

PUCHAR pbInput,

ULONG cbInput,

VOID *pPaddingInfo,

PUCHAR pbIV,

ULONG cbIV,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptEncrypt() function encrypts a block of data of given length.

3.2.5.2 BCryptDecrypt

NTSTATUS WINAPI BCryptDecrypt(

BCRYPT_KEY_HANDLE hKey,

PUCHAR pbInput,

ULONG cbInput,

VOID *pPaddingInfo,

PUCHAR pbIV,

ULONG cbIV,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptDecrypt() function decrypts a block of data of given length.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 25 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.2.6 Hashing and Message Authentication

3.2.6.1 BCryptCreateHash

NTSTATUS WINAPI BCryptCreateHash(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_HASH_HANDLE *phHash,

PUCHAR pbHashObject,

ULONG cbHashObject,

PUCHAR pbSecret,

ULONG cbSecret,

ULONG dwFlags);

The BCryptCreateHash() function creates a hash object with an optional key. The optional key is used for

HMAC, AES GMAC and AES CMAC.

3.2.6.2 BCryptHashData

NTSTATUS WINAPI BCryptHashData(

BCRYPT_HASH_HANDLE hHash,

PUCHAR pbInput,

ULONG cbInput,

ULONG dwFlags);

The BCryptHashData() function performs a one way hash on a data buffer. Call the BCryptFinishHash()

function to finalize the hashing operation to get the hash result.

3.2.6.3 BCryptDuplicateHash

NTSTATUS WINAPI BCryptDuplicateHash(

BCRYPT_HASH_HANDLE hHash,

BCRYPT_HASH_HANDLE *phNewHash,

PUCHAR pbHashObject,

ULONG cbHashObject,

ULONG dwFlags);

The BCryptDuplicateHash()function duplicates an existing hash object. The duplicate hash object

contains all state and data that was hashed to the point of duplication.

3.2.6.4 BCryptFinishHash

NTSTATUS WINAPI BCryptFinishHash(

BCRYPT_HASH_HANDLE hHash,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG dwFlags);

The BCryptFinishHash() function retrieves the hash value for the data accumulated from prior calls to

BCryptHashData() function.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 26 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.2.6.5 BCryptDestroyHash

NTSTATUS WINAPI BCryptDestroyHash(

BCRYPT_HASH_HANDLE hHash);

The BCryptDestroyHash() function destroys a hash object.

3.2.6.6 BCryptHash

NTSTATUS WINAPI BCryptHash(

BCRYPT_ALG_HANDLE hAlgorithm,

PUCHAR pbSecret,

ULONG cbSecret,

PUCHAR pbInput,

ULONG cbInput,

PUCHAR pbOutput,

ULONG cbOutput);

The function BCryptHash() performs a single hash computation. This is a convenience function that

wraps calls to the BCryptCreateHash(), BCryptHashData(), BCryptFinishHash(), and BCryptDestroyHash()

functions.

3.2.6.7 BCryptCreateMultiHash

NTSTATUS WINAPI BCryptCreateMultiHash(
BCRYPT_ALG_HANDLE hAlgorithm,
BCRYPT_HASH_HANDLE *phHash,
ULONG nHashes,
PUCHAR pbHashObject,
ULONG cbHashObject,
PUCHAR pbSecret,
ULONG cbSecret,
ULONG dwFlags);

BCryptCreateMultiHash() is a function that creates a new MultiHash object that is used in parallel

hashing to improve performance. The MultiHash object is equivalent to an array of normal (reusable)

hash objects.

3.2.6.8 BCryptProcessMultiOperations

NTSTATUS WINAPI BCryptProcessMultiOperations(
BCRYPT_HANDLE hObject,
BCRYPT_MULTI_OPERATION_TYPE operationType,
PVOID pOperations,
ULONG cbOperations,
ULONG dwFlags);

The BCryptProcessMultiOperations() function is used to perform multiple operations on a single multi-

object handle such as a MultiHash object handle. If any of the operations fail, then the function will

return an error.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 27 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.2.7 Signing and Verification

3.2.7.1 BCryptSignHash

NTSTATUS WINAPI BCryptSignHash(

BCRYPT_KEY_HANDLE hKey,

VOID *pPaddingInfo,

PUCHAR pbInput,

ULONG cbInput,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptSignHash() function creates a signature of a hash value.

Note: this function accepts SHA-1 hashes, which according to NIST SP 800-131A is disallowed for digital

signature generation. SHA-1 is currently legacy-use for digital signature verification.

3.2.7.2 BCryptVerifySignature

NTSTATUS WINAPI BCryptVerifySignature(

BCRYPT_KEY_HANDLE hKey,

VOID *pPaddingInfo,

PUCHAR pbHash,

ULONG cbHash,

PUCHAR pbSignature,

ULONG cbSignature,

ULONG dwFlags);

The BCryptVerifySignature() function verifies that the specified signature matches the specified hash.

Note: this function accepts SHA-1 hashes, which according to NIST SP 800-131A is disallowed for digital

signature generation. SHA-1 is currently legacy-use for digital signature verification.

3.2.8 Secret Agreement and Key Derivation

3.2.8.1 BCryptSecretAgreement

NTSTATUS WINAPI BCryptSecretAgreement(

BCRYPT_KEY_HANDLE hPrivKey,

BCRYPT_KEY_HANDLE hPubKey,

BCRYPT_SECRET_HANDLE *phAgreedSecret,

ULONG dwFlags);

The BCryptSecretAgreement() function creates a secret agreement value from a private and a public

key. This function is used with Diffie-Hellman (DH) and Elliptic Curve Diffie-Hellman (ECDH) algorithms.

3.2.8.2 BCryptDeriveKey

NTSTATUS WINAPI BCryptDeriveKey(

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 28 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

BCRYPT_SECRET_HANDLE hSharedSecret,

LPCWSTR pwszKDF,

BCryptBufferDesc *pParameterList,

PUCHAR pbDerivedKey,

ULONG cbDerivedKey,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptDeriveKey() function derives a key from a secret agreement value.

3.2.8.3 BCryptDestroySecret

NTSTATUS WINAPI BCryptDestroySecret(

BCRYPT_SECRET_HANDLE hSecret);

The BCryptDestroySecret() function destroys a secret agreement handle that was created by using the

BCryptSecretAgreement() function.

3.2.8.4 BCryptKeyDerivation

NTSTATUS WINAPI BCryptKeyDerivation(

 In BCRYPT_KEY_HANDLE hKey,

 _In_opt_ BCryptBufferDesc *pParameterList,

 _Out_writes_bytes_to_(cbDerivedKey, *pcbResult) PUCHAR pbDerivedKey,

 In ULONG cbDerivedKey,

 Out ULONG *pcbResult,

 In ULONG dwFlags);

The BCryptKeyDerivation() function executes a Key Derivation Function (KDF) on a key generated with

BCryptGenerateSymmetricKey() function. It differs from the BCryptDeriveKey() function in that it does

not require a secret agreement step to create a shared secret.

3.2.8.5 BCryptDeriveKeyPBKDF2

NTSTATUS WINAPI BCryptDeriveKeyPBKDF2(
BCRYPT_ALG_HANDLE hPrf,

 PUCHAR pbPassword,
ULONG cbPassword,
PUCHAR pbSalt,
ULONG cbSalt,
ULONGLONG cIterations,
PUCHAR pbDerivedKey,
ULONG cbDerivedKey,
ULONG dwFlags);

The BCryptDeriveKeyPBKDF2() function derives a key from a hash value by using the password based key

derivation function as defined by NIST SP 800-132 PBKDF and IETF RFC 2898 (specified as PBKDF2).

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 29 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.2.9 Cryptographic Transitions

3.2.9.1 Bit Strengths of DH and ECDH

Through the year 2010, implementations of DH and ECDH were allowed to have an acceptable bit

strength of at least 80 bits of security (for DH at least 1024 bits and for ECDH at least 160 bits). From

2011 through 2013, 80 bits of security strength was considered deprecated, and was disallowed starting

January 1, 2014. As of that date, only security strength of at least 112 bits is acceptable. ECDH uses

curve sizes of at least 256 bits (that means it has at least 128 bits of security strength), so that is

acceptable. However, DH has a range of 1024 to 4096 and that changed to 2048 to 4096 after 2013.

3.2.9.2 SHA-1

From 2011 through 2013, SHA-1 could be used in a deprecated mode for use in digital signature

generation. As of Jan. 1, 2014, SHA-1 is no longer allowed for digital signature generation, and it is

allowed for legacy use only for digital signature verification.

3.3 Control Input Interface
The Control Input Interface are the functions in Algorithm Providers and Properties. Options for control

operations are passed as input parameters to these functions.

3.4 Status Output Interface
The Status Output Interface for Cryptographic Primitives Library consists of the CNG primitive functions

listed in CNG Primitive Functions. For each function, the status information is returned to the caller as

the return value from the function.

3.5 Data Output Interface
The Data Output Interface for Cryptographic Primitives Library consists of the Cryptographic Primitives

Library export functions except for the Control Input Interfaces. Data is returned to the function’s caller

via output parameters.

3.6 Data Input Interface
The Data Input Interface for Cryptographic Primitives Library consists of the Cryptographic Primitives

Library export functions except for the Control Input Interfaces. Data and options are passed to the

interface as input parameters to the export functions. Data Input is kept separate from Control Input by

passing Data Input in separate parameters from Control Input.

3.7 Non-Security Relevant Configuration Interfaces
These non-cryptographic functions are used to configure cryptographic providers on the system. Note

that these functions are interfaces exported by the module, but are implemented in CNG.SYS. See the

the Cryptographic Primitives Library Security Policy Document for details on the services provided by

these functions.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 30 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Function Name Description

BCryptEnumAlgorithms Enumerates the algorithms for a given set of
operations.

BCryptEnumProviders Returns a list of CNG providers for a given algorithm.

BCryptRegisterConfigChangeNotify This is deprecated beginning with Windows 10.

BCryptResolveProviders Resolves queries against the set of providers currently
registered on the local system and the configuration
information specified in the machine and domain
configuration tables, returning an ordered list of
references to one or more providers matching the
specified criteria.

BCryptAddContextFunctionProvider Adds a cryptographic function provider to the list of
providers that are supported by an existing CNG
context.

BCryptRegisterProvider Registers a CNG provider.

BCryptUnregisterProvider Unregisters a CNG provider.

BCryptUnregisterConfigChangeNotify Removes a CNG configuration change event handler.

BCryptGetFipsAlgorithmMode Determines whether Cryptographic Primitives Library is
operating in FIPS mode. Some applications use the
value returned by this API to alter their own behavior,
such as blocking the use of some SSL versions.

BCryptQueryProviderRegistration Retrieves information about a CNG provider.

BCryptEnumRegisteredProviders Retrieves information about the registered providers.

BCryptCreateContext Creates a new CNG configuration context.

BCryptDeleteContext Deletes an existing CNG configuration context.

BCryptEnumContexts Obtains the identifiers of the contexts in the specified
configuration table.

BCryptConfigureContext Sets the configuration information for an existing CNG
context.

BCryptQueryContextConfiguration Retrieves the current configuration for the specified
CNG context.

BCryptAddContextFunction Adds a cryptographic function to the list of functions
that are supported by an existing CNG context.

BCryptRemoveContextFunction Removes a cryptographic function from the list of
functions that are supported by an existing CNG
context.

BCryptEnumContextFunctions Obtains the cryptographic functions for a context in the
specified configuration table.

BCryptConfigureContextFunction Sets the configuration information for the
cryptographic function of an existing CNG context.

BCryptQueryContextFunctionConfiguration Obtains the cryptographic function configuration
information for an existing CNG context.

BCryptEnumContextFunctionProviders Obtains the providers for the cryptographic functions
for a context in the specified configuration table.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 31 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

BCryptSetContextFunctionProperty Sets the value of a named property or a cryptographic
function in an existing CNG context.

BCryptQueryContextFunctionProperty Obtains the value of a named property for a
cryptographic function in an existing CNG context.

BCryptSetAuditingInterface Sets the auditing interface.

4 Roles, Services and Authentication

4.1 Roles
When an application requests the cryptographic module to generate keys for a user, the keys are

generated, used, and deleted as requested by applications. There are no implicit keys associated with a

user. Each user may have numerous keys, and each user’s keys are separate from other users’ keys. FIPS

140 validations define formal “User” and “Cryptographic Officer” roles. Both roles can use any of this

module’s services.

4.2 Services
Cryptographic Primitives Library services are described below.

1. Algorithm Providers and Properties – This module provides interfaces to register algorithm
providers

2. Random Number Generation
3. Key and Key-Pair Generation
4. Key Entry and Output
5. Encryption and Decryption
6. Hashing and Message Authentication
7. Signing and Verification
8. Secret Agreement and Key Derivation
9. Show Status – The module provides a show status service that is automatically executed by the

module to provide the status response of the module either via output to the computer monitor

or to log files.

10. Self-Tests - The module provides a power-up self-tests service that is automatically executed

when the module is loaded into memory.

11. Zeroizing Cryptographic Material - This service is executed as part of the module shutdown. See

Cryptographic Key Management

4.2.1 Mapping of Services, Algorithms, and Critical Security Parameters

The following table maps the services to their corresponding algorithms and critical security parameters

(CSPs).

Service Algorithms CSPs

Algorithm Providers and
Properties

None None

Random Number Generation AES-256 CTR DRBG

AES-CTR DRBG Seed
AES-CTR DRBG Entropy Input
AES-CTR DRBG V

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 32 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

AES-CTR DRBG Key

Key and Key-Pair Generation RSA, DH, ECDH, ECDSA, RC2, RC4,
DES, Triple-DES, AES, and HMAC
(RC2, RC4, and DES cannot be
used in FIPS mode.)

Symmetric Keys
Asymmetric Public Keys
Asymmetric Private Keys

Key Entry and Output SP 800-38F AES Key Wrapping
(128, 192, and 256)

Symmetric Keys
Asymmetric Public Keys
Asymmetric Private Keys

Encryption and Decryption Triple-DES with 2 key
(encryption disallowed) and 3
key in ECB, CBC, CFB8 and
CFB64 modes;

 AES-128, AES-192, and AES-
256 in ECB, CBC, CFB8,
CFB128, and CTR modes;

 AES-128, AES-192, and AES-
256 in CCM, CMAC, and
GMAC modes;

 AES-128, AES-192, and AES-
256 GCM decryption;

 XTS-AES XTS-128 and XTS-
256;

 SP 800-56B RSADP mod 2048

(IEEE 1619-2007 XTS-AES, AES
GCM encryption, RC2, RC4, RSA,
and DES, which cannot be used in
FIPS mode)

Symmetric Keys
Asymmetric Public Keys
Asymmetric Private Keys

Hashing and Message
Authentication

 FIPS 180-4 SHS SHA-1, SHA-
256, SHA-384, and SHA-512;

 FIPS 180-4 SHA-1, SHA-256,
SHA-384, SHA-512 HMAC;

 AES-128, AES-192, and AES-
256 in CCM, CMAC, and
GMAC;

 MD5 and HMAC-MD5
(allowed in TLS and EAP-TLS);

 MD2 and MD4 (disallowed in
FIPS mode)

Symmetric Keys (for HMAC,
AES CCM, AES CMAC, and
AES GMAC)

Signing and Verification FIPS 186-4 RSA (RSASSA-
PKCS1-v1_5 and RSASSA-PSS)
digital signature generation
and verification with 2048
and 3072 modulus;

Asymmetric Public Keys
Asymmetric RSA Private Keys
Asymmetric ECDSA Public
Keys
Asymmetric ECDSA Private
keys

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 33 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

supporting SHA-112, SHA-256,
SHA-384, and SHA-512

 FIPS 186-4 ECDSA with the
following NIST curves: P-256,
P-384, P-521

Secret Agreement and Key
Derivation

 KAS – SP 800-56A Diffie-
Hellman Key Agreement;
Finite Field Cryptography
(FFC)

 KAS – SP 800-56A EC Diffie-
Hellman Key Agreement with
the following NIST curves: P-
256, P-384, P-521 and the
FIPS non-Approved curves
listed in Non-Approved
Algorithms

 SP 800-108 Key Derivation
Function (KDF) CMAC-AES
(128, 192, 256), HMAC
(SHA1, SHA-256, SHA-384,
SHA-512)

 SP 800-132 PBKDF

 Legacy CAPI KDF (cannot be
used in FIPS mode)

 HKDF (cannot be used in FIPS
mode)

DH Private and Public Values
ECDH Private and Public
Values

Show Status None None

Self-Tests See Section Self-Tests for the list
of algorithms

None

 Zeroizing Cryptographic Material None None

4.2.2 Mapping of Services, Export Functions, and Invocations

The following table maps the services to their corresponding export functions and invocations.

Service Export Functions Invocations

Algorithm Providers and
Properties

BCryptOpenAlgorithmProvider
BCryptCloseAlgorithmProvider
BCryptSetProperty
BCryptGetProperty
BCryptFreeBuffer

This service is executed
whenever one of these
exported functions is called.

Random Number Generation BcryptGenRandom This service is executed
whenever one of these
exported functions is called.

12 SHA-1 is only acceptable for signature verification.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 34 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Key and Key-Pair Generation BCryptGenerateSymmetricKey
BCryptGenerateKeyPair
BCryptFinalizeKeyPair
BCryptDuplicateKey
BCryptDestroyKey

This service is executed
whenever one of these
exported functions is called.

Key Entry and Output BCryptImportKey
BCryptImportKeyPair
BCryptExportKey

This service is executed
whenever one of these
exported functions is called.

Encryption and Decryption BCryptEncrypt
BCryptDecrypt

This service is executed
whenever one of these
exported functions is called.

Hashing and Message
Authentication

BCryptCreateHash
BCryptHashData
BCryptDuplicateHash
BCryptFinishHash
BCryptDestroyHash
BCryptHash
BCryptCreateMultiHash
BCryptProcessMultiOperations

This service is executed
whenever one of these
exported functions is called.

Signing and Verification BCryptSignHash
BCryptVerifySignature

This service is executed
whenever one of these
exported functions is called.

Secret Agreement and Key
Derivation

BCryptSecretAgreement
BCryptDeriveKey
BCryptDestroySecret
BCryptKeyDerivation
BCryptDeriveKeyPBKDF2

This service is executed
whenever one of these
exported functions is called.

Show Status All Exported Functions This service is executed upon
completion of an exported
function.

Self-Tests DllMain This service is executed upon
startup of this module.

Zeroizing Cryptographic Material BCryptDestroyKey
BCryptDestroySecret

This service is executed
whenever one of these
exported functions is called.

4.2.3 Non-Approved Services

The following table lists other non-approved APIs exported from the crypto module.

Function Name Description

BCryptDeriveKeyCapi Derives a key from a hash value. This function is provided
as a helper function to assist in migrating from legacy
Cryptography API (CAPI) to CNG.

BCRYPT_KDF_HKDF Derives a key from a hash value. This function is provided
to support potential enhancements to Windows.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 35 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

4.3 Authentication
Cryptographic Primitives Library does not provide authentication of users. Roles are implicitly assumed

based on the services that are executed.

5 Finite State Model

5.1 Specification
The following diagram shows the finite state model for Cryptographic Primitives:

6 Operational Environment
The operational environment for Cryptographic Primitives Library is the Windows 10 operating system

running on a supported hardware platform.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 36 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

6.1 Single Operator
The for Cryptographic Primitives Library is loaded into process memory for a single application. The

“single operator” for the module is the identity associated with the parent process.

6.2 Cryptographic Isolation
Windows dynamic link libraries, which includes BCRYPTPRIMITIVES.DLL, are loaded into a user-mode

process to expose the services offered by that DLL. The operating system environment enforces process

isolation including memory (where keys and intermediate key data are stored) and CPU scheduling.

6.3 Integrity Chain of Trust
Windows uses several mechanisms to provide integrity verification depending on the stage in the boot

sequence and also on the hardware and configuration. The following diagram describes the integrity

chain of trust for each supported configuration:

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 37 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

BCryptPrimitives.dll
BitLocker Dump

Filter
(DumpFVE.sys)

Virtual TPM
(TPMEng.dll)

Code Integrity
(CI.dll)

Secure Kernel Code
Integrity (SKCI.dll)

CNG.sys

Windows Resume (WinResume.efi)Windows OS Loader (WinLoad.efi)

Boot Manager (BootMgr.efi)

UEFI

When Secure Boot is enabled, UEFI validates

Not enabled

Enabled

Memory Integrity

Core Isolation not enabledCore Isolation enabled

The integrity of Cryptographic Primitives Library is checked by Code Integrity or Secure Kernel Code

Integrity before it is loaded into process memory.

Windows binaries include a SHA-256 hash of the binary signed with the 2048 bit Microsoft RSA code-

signing key (i.e., the key associated with the Microsoft code-signing certificate). The integrity check uses

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 38 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

the public key component of the Microsoft code signing certificate to verify the signed hash of the

binary.

7 Cryptographic Key Management
The Cryptographic Primitives Library crypto module uses the following critical security parameters (CSPs)

for FIPS Approved security functions:

Table 3

Security Relevant Data Item Description

Symmetric encryption/decryption keys Keys used for AES or Triple-DES encryption/decryption.
Key sizes for AES are 128, 192, and 256 bits, and key
sizes for Triple-DES are 192 and 128 bits.

HMAC keys Keys used for HMAC-SHA1, HMAC-SHA256, HMAC-
SHA384, and HMAC-SHA512

Asymmetric DSA Public Keys Keys used for the verification of DSA digital signatures.
Key sizes are 2048 and 3072 bits.

Asymmetric DSA Private Keys Keys used for the calculation of DSA digital signatures.
Key sizes are 2048 and 3072 bits.

Asymmetric ECDSA Public Keys Keys used for the verification of ECDSA digital
signatures. Curve sizes are P-256, P-384, and P-521.

Asymmetric ECDSA Private Keys Keys used for the calculation of ECDSA digital signatures.
Curve sizes are P-256, P-384, and P-521.

Asymmetric RSA Public Keys Keys used for the verification of RSA digital signatures.
Key sizes are 2048 and 3072 bits. These keys can be
produced using RSA Key Generation.

Asymmetric RSA Private Keys Keys used for the calculation of RSA digital signatures.
Key sizes are 2048 and 3072 bits. These keys can be
produced using RSA Key Generation.

AES-CTR DRBG Entropy Input A secret value that is at least 256 bits and maintained
internal to the module that provides the entropy
material for AES-CTR DRBG output13

AES-CTR DRBG Seed A 384 bit secret value maintained internal to the module
that provides the seed material for AES-CTR DRBG
output14

AES-CTR DRBG V A 128 bit secret value maintained internal to the module
that provides the entropy material for AES-CTR DRBG
output15

13 Microsoft Common Criteria Windows Security Target, Page 29.
14 Recommendation for Random Number Generation Using Deterministic Random Bit Generators, NIST SP 800-90A
Revision 1, page 49.
15 Ibid.

http://www.commoncriteriaportal.org/files/epfiles/Windows%2010%20AU%20and%20Server%202016%20GP%20OS%20Security%20Target%20-%20Public.pdf

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 39 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

AES-CTR DRBG key A 256 bit secret value maintained internal to the module
that provides the entropy material for AES-CTR DRBG
output16

DH Private and Public values Private and public values used for Diffie-Hellman key
establishment. Key sizes are 2048 to 4096 bits.

ECDH Private and Public values Private and public values used for EC Diffie-Hellman key
establishment. Curve sizes are P-256, P-384, and P-521
and the ones listed in section 2.3.

IKEv1 and IKEv2 DH shared secrets Diffie-Hellman shared secret lengths are 2048 (SHA 256),
256 (SHA 256), and 384 (SHA 384).

TLS Derived Key A key derived for the TLS protocol. Key size is 384 bits.

7.1 Access Control Policy
The Cryptographic Primitives Library cryptographic module allows controlled access to security relevant

data items contained within it. The following table defines the access that a service has to each. The

permissions are categorized as a set of four separate permissions: read (r), write (w), execute (x), delete

(d). If no permission is listed, the service has no access to the item.

Cryptographic Primitives Library
crypto module

Service Access Policy

Sy
m

m
et

ri
c

en
cr

yp
ti

o
n

 a
n

d
 d

ec
ry

p
ti

o
n

 k
ey

s

H
M

A
C

 k
ey

s

A
sy

m
m

et
ri

c
D

SA
 P

u
b

lic
 K

ey
s

A
sy

m
m

et
ri

c
D

SA
 P

ri
va

te
 K

ey
s

A
sy

m
m

et
ri

c
EC

D
SA

 P
u

b
lic

 k
ey

s

A
sy

m
m

et
ri

c
EC

D
SA

 P
ri

va
te

 k
ey

s

A
sy

m
m

et
ri

c
R

SA
 P

u
b

lic
 K

ey
s

A
sy

m
m

et
ri

c
R

SA
 P

ri
va

te
 K

ey
s

D
H

 P
u

b
lic

 a
n

d
 P

ri
va

te
 v

al
u

es

EC
D

H
 P

u
b

lic
 a

n
d

 P
ri

va
te

 v
al

u
es

A
ES

-C
TR

 D
R

B
G

 S
ee

d
, A

ES
-C

TR
 D

R
B

G
 E

n
tr

o
p

y

In
p

u
t,

 A
ES

-C
TR

 D
R

B
G

 V
, &

 A
ES

-C
TR

 D
R

B
G

 k
ey

IK
Ev

1
 &

 IK
Ev

2
 D

H
 S

h
ar

ed
 S

ec
re

t

TL
S

D
er

iv
ed

 K
ey

Algorithm Providers and
Properties

Random Number Generation x

Key and Key-Pair Generation w

d

w

d

w

d

w

d

w

d

w

d

w

d

w

d

w

d

w

d
x

Key Entry and Output rw rw rw rw rw rw rw rw rw rw

Encryption and Decryption x

Hashing and Message
Authentication

 xw

Signing and Verification x x x x x x x

Secret Agreement and Key
Derivation

 x x x x x

Show Status

16 Ibid.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 40 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Self-Tests

Zeroizing Cryptographic Material w

d

w

d

w

d

w

d

w

d

w

d

w

d

w

d

w

d

w

d
wd

w

d

w

d

7.2 Key Material
Each time an application links with Cryptographic Primitives Library, the DLL is instantiated and no keys

exist within it. The user application is responsible for importing keys into Cryptographic Primitives

Library or using Cryptographic Primitives Library’s functions to generate keys.

7.3 Key Generation
Cryptographic Primitives Library can create and use keys for the following algorithms: RSA, DSA, DH,

ECDH, ECDSA, RC2, RC4, DES, Triple-DES, AES, and HMAC. However, RC2, RC4, and DES cannot be used in

FIPS mode.

Random keys can be generated by calling the BCryptGenerateSymmetricKey() and

BCryptGenerateKeyPair() functions. Random data generated by the BCryptGenRandom() function is

provided to BCryptGenerateSymmetricKey() function to generate symmetric keys. DES, Triple-DES, AES,

RSA, ECDSA, DSA, DH, and ECDH keys and key-pairs are generated following the techniques given in SP

800-56Ar2 (Section 5.8.1).

Keys generated while not operating in the FIPS mode of operation (as described in section 2) cannot be

used in FIPS mode, and vice versa.

7.4 Key Establishment
Cryptographic Primitives Library can use FIPS approved Diffie-Hellman key agreement (DH), Elliptic Curve

Diffie-Hellman key agreement (ECDH), RSA key transport and manual methods to establish keys.

Alternatively, the module can also use Approved KDFs to derive key material from a specified secret

value or password.

Cryptographic Primitives Library can use the following FIPS approved key derivation functions (KDF) from

the common secret that is established during the execution of DH and ECDH key agreement algorithms:

 BCRYPT_KDF_SP80056A_CONCAT. This KDF supports the Concatenation KDF as specified in SP
800-56A (Section 5.8.1).

 BCRYPT_KDF_HASH. This KDF supports FIPS approved SP 800-56A (Section 5.8), X9.63, and X9.42
key derivation.

 BCRYPT_KDF_HMAC. This KDF supports the IPsec IKEv1 key derivation that is non-Approved but
is an allowed legacy implementation in FIPS mode when used to establish keys for IKEv1 as per
scenario 4 of IG D.8.

 BCRYPT_KDF_TLS_PRF. This KDF supports the SSLv3.1 and TLSv1.0 key derivation that is non-
Approved but is an allowed legacy implementation in FIPS mode when used to establish keys for
SSLv3.1 or TLSv1.0 as specified in as per scenario 4 of IG D.8.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 41 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Primitives Library can use the following FIPS approved key derivation functions (KDF) from
a key handle created from a specified secret or password:

 BCRYPT_SP800108_CTR_HMAC_ALGORITHM. This KDF supports the counter-mode variant of
the KDF specified in SP 800-108 (Section 5.1) with HMAC as the underlying PRF.

 BCRYPT_SP80056A_CONCAT_ALGORITHM. This KDF supports the Concatenation KDF as
specified in SP 800-56Ar2 (Section 5.8.1).

 BCRYPT_PBKDF2_ALGORITHM. This KDF supports the Password Based Key Derivation Function
specified in SP 800-132 (Section 5.3).

In addition, the industry standard KDF, HKDF (CNG flag BCRYPT_KDF_HKDF), and the legacy proprietary
CryptDerive Key KDF, (BCRYPT_CAPI_KDF_ALGORITHM, described at
https://msdn.microsoft.com/library/windows/desktop/aa379916.aspx). cannot be used in a FIPS
approved mode.

7.4.1 NIST SP 800-132 Password Based Key Derivation Function (PBKDF)

There are two options presented in NIST SP 800-132, pages 8 – 10, that are used to derive the Data

Protection Key (DPK) from the Master Key. With the Cryptographic Primitives Library, it is up to the

caller to select the option to generate/protect the DPK. For example, DPAPI uses option

2a. Cryptographic Primitives Library provides all the building blocks for the caller to select the desired

option.

The Cryptographic Primitives Library supports the following HMAC hash functions as parameters for

PBKDF:

 SHA-1 HMAC

 SHA-256 HMAC

 SHA-384 HMAC

 SHA-512 HMAC

Keys derived from passwords, as described in SP 800-132, may only be used for storage applications. In
order to run in a FIPS Approved manner, strong passwords must be used and they may only be used for
storage applications. The password/passphrase length is enforced by the caller of the PBKDF interfaces
when the password/passphrase is created and not by this cryptographic module.17

7.4.2 NIST SP 800-38F AES Key Wrapping

As outlined in FIPS 140-2 IG, D.2 and D.9, AES key wrapping serves as a form of key transport, which in

turn is a form of key establishment. This implementation of AES key wrapping is in accordance with NIST

SP 800-38F Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping.

7.5 Key Entry and Output

17 The probability of guessing a password is determined by its length and complexity, an organization should define
a policy for these based based their threat model, suh as the example guidance in NIST SP800-63b, Appendix A.

https://msdn.microsoft.com/library/windows/desktop/aa379916.aspx

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 42 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Keys can be both exported and imported out of and into Cryptographic Primitives Library via

BCryptExportKey(), BCryptImportKey(), and BCryptImportKeyPair() functions.

Symmetric key entry and output can also be done by exchanging keys using the recipient’s asymmetric

public key via BCryptSecretAgreement() and BCryptDeriveKey() functions.

Exporting the RSA private key by supplying a blob type of BCRYPT_PRIVATE_KEY_BLOB,

BCRYPT_RSAFULLPRIVATE_BLOB, or BCRYPT_RSAPRIVATE_BLOB to BCryptExportKey() is not allowed in

FIPS mode.

7.6 Key Storage
Cryptographic Primitives Library does not provide persistent storage of keys.

7.7 Key Archival
Cryptographic Primitives Library does not directly archive cryptographic keys. The Authenticated User

may choose to export a cryptographic key (cf. “Key Entry and Output” above), but management of the

secure archival of that key is the responsibility of the user.

7.8 Key Zeroization
All keys are destroyed and their memory location zeroized when the operator calls BCryptDestroyKey()

or BCryptDestroySecret() on that key handle.

8 Self-Tests

8.1 Power-On Self-Tests
The Cryptographic Primitives Library module implements Known Answer Test (KAT) functions each time

the module is loaded into a process and the default DLL entry point, DllMain is called.

Cryptographic Primitives Library performs the following power-on (startup) self-tests:

 HMAC (SHA-1, SHA-256, and SHA-512) Known Answer Tests

 Triple-DES encrypt/decrypt ECB Known Answer Tests

 AES-128 encrypt/decrypt ECB Known Answer Tests

 AES-128 encrypt/decrypt CCM Known Answer Tests

 AES-128 encrypt/decrypt CBC Known Answer Tests

 AES-128 CMAC Known Answer Test

 AES-128 encrypt/decrypt GCM Known Answer Tests

 XTS-AES encrypt/decrypt Known Answer Tests

 RSA sign/verify Known Answer Tests using RSA_SHA256_PKCS1 signature generation and
verification

 DSA sign/verify tests with 2048-bit key

 ECDSA sign/verify Known Answer Tests on P256 curve

 DH secret agreement Known Answer Test with 2048-bit key

 ECDH secret agreement Known Answer Test on P256 curve

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 43 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

 SP 800-56A concatenation KDF Known Answer Tests (same as Diffie-Hellman KAT)

 SP 800-90A AES-256 based counter mode random generator Known Answer Tests (instantiate,
generate and reseed)

 SP 800-108 KDF Known Answer Test

 SP 800-132 PBKDF Known Answer Test

 SHA-256 Known Answer Test

 SHA-512 Known Answer Test

 SP800-135 TLS 1.0/1.1 KDF Known Answer Test

 SP800-135 TLS 1.2 KDF Known Answer Test

 IKE SP800_135 KDF Known Answer Test

In any self-test fails, Cryptographic Primitives Library DllMain returns an error code. The caller may

attempt to reload the Cryptographic Primitives Library.

8.2 Conditional Self-Tests
Cryptographic Primitives Library performs the following conditional self-tests on key generation and

import:

 Pairwise consistency tests for DSA, ECDSA, and RSA keys

 DH and ECDH assurances (including pairwise consistency tests) according to NIST SP 800-56A

A Continuous Random Number Generator Test (CRNGT) and the DRBG health tests are performed for SP
800-90A AES-256 CTR DRBG.

When BCRYPT_ENABLE_INCOMPATIBLE_FIPS_CHECKS flag (required by policy) is used with
BCryptGenerateSymmetricKey, then the XTS-AES Key_1 ≠ Key_2 check is performed in compliance with
FIPS 140-2 IG A.9.

If the conditional self-test fails, the module will not load and a status code other than STATUS_SUCCESS
will be returned.

9 Design Assurance
The secure installation, generation, and startup procedures of this cryptographic module are part of the

overall operating system secure installation, configuration, and startup procedures for the Windows 10

operating system.

The Windows 10 operating system must be pre-installed on a computer by an OEM, installed by the

end-user, by an organization’s IT administrator, or updated from a previous Windows 10 version

downloaded from Windows Update.

An inspection of authenticity of the physical medium can be made by following the guidance at this

Microsoft web site: https://www.microsoft.com/en-us/howtotell/default.aspx

The installed version of Windows 10 must be verified to match the version that was validated. See

Appendix A – How to Verify Windows Versions and Digital Signatures for details on how to do this.

https://www.microsoft.com/en-us/howtotell/default.aspx

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 44 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

For Windows Updates, the client only accepts binaries signed by Microsoft certificates. The Windows

Update client only accepts content whose SHA-2 hash matches the SHA-2 hash specified in the

metadata. All metadata communication is done over a Secure Sockets Layer (SSL) port. Using SSL

ensures that the client is communicating with the real server and so prevents a spoof server from

sending the client harmful requests. The version and digital signature of new cryptographic module

releases must be verified to match the version that was validated. See Appendix A – How to Verify

Windows Versions and Digital Signatures for details on how to do this.

10 Mitigation of Other Attacks
The following table lists the mitigations of other attacks for this cryptographic module:

Algorithm Protected Against Mitigation

SHA1

Timing Analysis Attack Constant time implementation

Cache Attack Memory access pattern is independent of any confidential data

SHA2

Timing Analysis Attack Constant time implementation

Cache Attack Memory access pattern is independent of any confidential data

Triple-DES Timing Analysis Attack Constant time implementation

AES

Timing Analysis Attack Constant time implementation

Cache Attack Memory access pattern is independent of any confidential data

Protected against cache attacks only when used with AES NI

11 Security Levels
The security level for each FIPS 140-2 security requirement is given in the following table.

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security NA

Operational Environment 1

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 45 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 2

Mitigation of Other Attacks 1

12 Additional Details
For the latest information on Microsoft Windows, check out the Microsoft web site at:

https://www.microsoft.com/en-us/windows

For more information about FIPS 140 validations of Microsoft products, please see:

https://docs.microsoft.com/en-us/windows/security/threat-protection/fips-140-validation

https://www.microsoft.com/en-us/windows

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 46 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

13 Appendix A – How to Verify Windows Versions and Digital Signatures

13.1 How to Verify Windows Versions
The installed version of Windows 10 must be verified to match the version that was validated using the

following method:

1. In the Search box type "cmd" and open the Command Prompt desktop app.
2. The command window will open.
3. At the prompt, enter "ver”.
4. The version information will be displayed in a format like this:

Microsoft Windows [Version 10.0.xxxxx]

If the version number reported by the utility matches the expected output, then the installed version
has been validated to be correct.

13.2 How to Verify Windows Digital Signatures
After performing a Windows Update that includes changes to a cryptographic module, the digital

signature and file version of the binary executable file must be verified. This is done like so:

1. Open a new window in Windows Explorer.
2. Type “C:\Windows\” in the file path field at the top of the window.
3. Type the cryptographic module binary executable file name (for example, “CNG.SYS”) in the

search field at the top right of the window, then press the Enter key.
4. The file will appear in the window.
5. Right click on the file’s icon.
6. Select Properties from the menu and the Properties window opens.
7. Select the Details tab.
8. Note the File version Property and its value, which has a number in this format: xx.x.xxxxx.xxxx.
9. If the file version number matches one of the version numbers that appear at the start of this

security policy document, then the version number has been verified.
10. Select the Digital Signatures tab.
11. In the Signature list, select the Microsoft Windows signer.
12. Click the Details button.
13. Under the Digital Signature Information, you should see: “This digital signature is OK.” If that

condition is true, then the digital signature has been verified.

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 47 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

14 Appendix B – References
This table lists the specifications for each elliptic curve in section Non-Approved Algorithms

Curve Specification

Curve25519 https://cr.yp.to/ecdh/curve25519-20060209.pdf

brainpoolP160r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP192r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP192t1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP224r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP224t1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP256r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP256t1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP320r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP320t1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP384r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP384t1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP512r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP512t1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

ec192wapi http://www.gbstandards.org/GB_standards/GB_standard.asp?id=900
(The GB standard is available here for purchase)

nistP192 http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

nistP224 http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

numsP256t1 https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/curvegen.pdf

numsP384t1 https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/curvegen.pdf

numsP512t1 https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/curvegen.pdf

secP160k1 http://www.secg.org/sec2-v2.pdf

secP160r1 http://www.secg.org/sec2-v2.pdf

secP160r2 http://www.secg.org/sec2-v2.pdf

secP192k1 http://www.secg.org/sec2-v2.pdf

secP192r1 http://www.secg.org/sec2-v2.pdf

secP224k1 http://www.secg.org/sec2-v2.pdf

secP224r1 http://www.secg.org/sec2-v2.pdf

secP256k1 http://www.secg.org/sec2-v2.pdf

secP256r1 http://www.secg.org/sec2-v2.pdf

secP384r1 http://www.secg.org/sec2-v2.pdf

secP521r1 http://www.secg.org/sec2-v2.pdf

wtls12 http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-
20010406-a.pdf

wtls7 http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-
20010406-a.pdf

https://cr.yp.to/ecdh/curve25519-20060209.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.gbstandards.org/GB_standards/GB_standard.asp?id=900
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/curvegen.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/curvegen.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/curvegen.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/curvegen.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/curvegen.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/curvegen.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf

Cryptographic Primitives Library Security Policy Document

© 2019 Microsoft. All Rights Reserved Page 48 of 48
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Curve Specification

wtls9 http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-
20010406-a.pdf

x962P192v1 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

x962P192v2 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

x962P192v3 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

x962P239v1 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

x962P239v2 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

x962P239v3 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

x962P256v1 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title

